close

標題:

一條很難的數學問題,求解答

免費註冊體驗

 

此文章來自奇摩知識+如有不便請留言告知

發問:

z=f(x, y)=x^2y^3+4x-y^2+3y+5 f(2,1)=19 If f(x, y) represents the loudness (in decibels = db) at the location (x ,y) (in meters m), then what is the rate of change of the loudness at the location (2, 1) if we move in the direction ?

最佳解答:

dz/dt = ?z/?x.dx/dt + ?z/?y.dy/dt = 2xy^3dx/dt + 3x^2y^2dy/dt + 4dx/dt - 2ydy/dt + 3dy/dt = (2xy^3+4)dx/dt + (3x^2y^2-2y+3)dy/dt = (2*2*1^3+4)*0.6 + (3*2^2*1^2-2*1+3)*(-0.8) = 4.8 - 11.2 = -6.4 dB/s 2013-05-31 18:39:26 補充: Correction from the fourth line onwards: = 4.8 - 10.4 = -5.6 dB/s 2013-06-01 10:40:00 補充: Finding the rate of loudness change with respect to distance: Unit vector of the direction (u) = /√(0.6^2+(-0.8)^2) = Required rate = (?z/?x+?z/?y)?u = (2*2*1^3+4)*0.6 + (3*2^2*1^2-2*1+3)*(-0.8) = 8*0.6 + 13*(-0.8) = 4.8 - 10.4 = -5.6 dB

其他解答:

The rate of loudness change should be with respect to distance, not with respect to time. There is no indication in the question regarding time.

arrow
arrow
    文章標籤
    生物 文章 奇摩
    全站熱搜
    創作者介紹
    創作者 wszspj2 的頭像
    wszspj2

    wszspj2的部落格

    wszspj2 發表在 痞客邦 留言(0) 人氣()