標題:
Fluid mechanics
發問:
http://holland.pk/1vt5gfeb
最佳解答:
Let P1 and P2 be the pressure at the lower and upper opening ends of the manometer tube respectively. Hence, P1 = P2 + (1.5 - 0.25)(po)g + 0.25(p')g where po and p' are the densities of oil (S.G. = 0.86) and manometer liquid (S.G. = 2.5) respectively. i.e. P1 - P2 = (1.25 x 860 x 9.81 + 0.25 x 2500 x 9.81) Pa = 16 677 Pa Apply Bernoulli's Equation, P1 + (1/2)(po)(V1)^2 = P2 + (1/2)(po)(V2)^2 + 1.5(po)g where V1 and V2 are the velocities of oil near the lower and upper opening ends of the manometer tube respectively. thus, P1 - P2 = (po/2)[(V2)^2 - (V1)^2] + 1.5(po)g i.e. 16677 = (po/2)[(V2)^2 - (V1)^2] + 1.5(po)g ----------- (1) Now, apply the Continuity Equation, 0.03(V1) = 0.012(V2) V1 = (0.012/0.03)(V2) = 0.4(V2) Equation (1) becomes, 16677 = (po/2)[(V2)^2 - 0.16(V2)^2] + 1.5(po)g i.e 16677 = (860/2).[(1 - 0.16)(V2)^2] + 1.5 x 860 x 9.81 16677 = 361.2(V2)^2 + 12655 Hence, V2 = 3.337 m /s The flow rate of oil = 0.012 x 3.337 m ^3/s = 0.04 m ^3/s
此文章來自奇摩知識+如有不便請留言告知
其他解答:
留言列表